In this work, we explore experimentally and theoretically the spectrum of magnetic excitations of the Fe3+ and Yb3+ ions in ytterbium iron garnet (Yb3Fe5O12). We present a complete description of the crystal-field splitting of the 4f states of Yb3+, including the effect of the exchange field generated by the magnetically ordered Fe subsystem. We also consider a further effect of the Fe-Yb exchange interaction, which is to hybridize the Yb crystal field excitations with the Fe spin-wave modes at positions in the Brillouin zone where the two types of excitations cross. We present detailed measurements of these hybridized excitations, and we propose a framework that can be used in the quantitative analysis of the coupled spectra in terms of the anisotropic 4f-3d exchange interaction.