Electrostatic contribution to twist rigidity of DNA

Mohammad-Rafiee F, Golestanian R

The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution—the electrostatic twist rigidity of DNA is found to be [Formula presented], which makes up about [Formula presented] of its total twist rigidity [Formula presented]. The electrostatic twist rigidity is found, however, to depend only weakly on the salt concentration, because of a competition between two different screening mechanisms: (1) Debye screening by the salt ions in the bulk, and (2) structural screening by the periodic charge distribution along the backbone of the helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist rigidity could stabilize or destabilize the structure of a helical polyelectrolyte. © 2004 The American Physical Society.